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ABSTRACT =

The internal pﬁyéical mechanism that governé the current
conduction in junction—gaﬁe field-effect transistors is étudied.
A numeriéal method of analyzing the devices with different‘
léngth—to—width ratios and doping profiles is developed. This
method takes into account the two-dimensional character of the
electric field and the field-dependent mobility. AQplication
of the methbd to various device models shows that the channel
width arnd the carrier concentration in the conductive channel
- decrease with the increasing drain-to-source voltage for conventional
devices. It also shows larger differential drain conductances for
shorter devices when the drift velocity is npt saturated. The
interaction of the source and the drain éiQes the carrier accumu-
lation in the channel which leads t§ the space-charge-limited
current flow. The important parameters for the space-charge-
limited current flow are fbund to be the L/LDE ratio and the
crossover voltage. Tridde—like characteristics have been ob-
.tained fof a deviéé model with a small L/LDE ratio and a small
crossover voltage. In conclusion the theory presented in this
dissertation explains the important féatures of the eXperimentally.
obéerved steady—state‘drain characteristics by clarifying the
contribution of the various physical mechanisms to the current

\

conduction.
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Chapter I: INTRODUCTION

A junction—gate field;effect transistor (JFET) is an active
semiconductor junction device. The cross-sectional view of a
JFET wiéh N-channel is‘shown in Fig; 1.1. The two gate terminals
in the figure are usually tied together. The drain current which
flows parallel to the metallurgical gate junction is controlled
mainly by the transverse electric field by means of the reverse
biased gate P-N junction. Unlike the bipolar tranéistor which
oéerates.by the injection of minority carriers, the JFET is a uni-
polar transistor; the current is carried by the majority carriers.
When compared to the bipolar transistors, the JFET has lower noise,
smaller temperature dependence, stronger resistance to the radiation
damage and higher DC input impedance. |

‘The operation of the JFET was first analyzed by W. Shockleyl
for symmetrié devices with heavily doped gate regions and with

large length-to-width ratios, i.e., .
L/a > 3

where L is the iength and 2a is the width of thé active region of
the‘device. The anaiysis is based on the 'Gradual-Channel Approxi-
mation' which assumes éhe total depletion of the free carriers in
the space-charge region and the neutrality of the conducting channel.
It is further assuméd that the transition between the two fegions

is abrupt. An'ihﬁortant parameter of the gradual-channel approxi-

mation is the pinch-off voltage, Vp which is the potentisl drop
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across a space-charge region of width 'a!' of a one-dimensional P-N
junction similar to the gate P-N junction of the device. When

the source and the drain terminals are shorted, the application

of Vp to the gate depletes all the‘carriers from the channel.

As was fecognized by Shockley, the gradual-channel approximation

is valid only for a device with a large length-to-width ratio and
for the drain-to-gate voltage (Vdg) less than the pinch-off voltage
of the device. If wé assume, however, that the drain current
remains constant for V

dg

> Vp, the general behavior of the pentode-
like external drain charactéristics observed in experiment52 is
well described. Since the gradual-channel approximation gives

zero channel width for vdg = Vp, the assumption of the constant
drain current implying zero differential drain conductance is
“arbitrary. Moreover, the internal physical mechanism of the
current conduction giving this drain current can not be explained.
The gradual-channel approximation has received wide acceptance due
to its simplicity and its capability of giving a reasonable descrip-
tion of the external characteriétics although it fails to giQe the
detailed picture of the internal behavior of the device.

Esaki and Chang3 have shown that devices with small length-to-
width ratios are favorable for high-speed operations by comparing
various structures of JFETs.in terms éf/fhe transit time and the
transconductance at some limiting bias conditions. From a similar

study, Buchanan et al.4 were also led to the .same conclusion and

their experimental device showed nonsaturated drain characteristics.



The failure of thé gradual-channel appfoximation for the bias
condition Vdg > Vp originates fromAthe:strong.two—dimensional
field distribution near the drain. Several attempts have been
made to describe this field distribution. From the assumption
vthat the conducting channél is completely pinched-off for vdg > Vp,
_ Shockley and Prim®? > solved for the two-dimensional electfic field
near the drain and the solution was matched to that of the gradual-
channel approximation near the source. A similar approach has been
used.by Wu and Sah6 with a more refined matching process. The non-
zero differential drain conductance predicted by these analyses is

in general agreement with the experiment32’6

but the starting
assumption of complete pinch-off of the conducting channel is in-
compatible with thevlarge drain current. |

The saturation of the drift velocity with high electric
fields7’8 has been recognized as an important factor for Ehe
operation of a JPETvby many authors. Dacey and R0559 have modi-
‘fied the gradual-channel approximation by assuming that the elec-
tric field is in the tepid range. An approximation which gives
the 'mobility for the whole range of the electric field has been
used by Trofimenkofflo and Tarneyll to_obtain an analytic solution.
Grosvalet et al.l2 have_used an analog compﬁter to find the poten-
tial distribution aloﬁg the center line of the channel and have
suggested that the saturation of the drift velocity is the main

cause of the saturation of the drain current for their device.

Zuleeg13 measured the saturation current for short devices at




various tempebatures and found.the same teﬁperature dependence.as
the limiting drift Qelocity.

Hauserl4 has analyzed both long and éhort devices using a
revised form of the gradual-channel approximation for the circular
gate junction and taking into account the field dependent mobility.
By qualitative arguments, he predicted a minimum channel width of
the order of the Debye length and the decrease of the free carrier
concentration inside the conducting channel below the thermal
equilibrium value with.the increasing drain voltage.

Grebene and GhandhilS have proposed a device model with two
regions. In region—i the gradual-channel approximation is valid
~and in-region-II the.curfent is confined te flow through a narrow
channel whose width is much smaller than the device width. The
two regions are separated by assuming that the electric field in
regioﬁ—II is always greater than the critical field, i.e., the
drift velocity is saturated in region-II. According to this 'Two-
Region Model', the carrier concentrétion inside the channel in
region-II is larger than that in the thermal équilibrium condition.

Teszner and.Gicquell6 have fabricated devices with small
length-to-width ratios by ;ateral.diffusion techniques. Due to the
fabrication proéess, Ehe doping profiles of these devices'are non-
uniform along the channel. These devices have shown both pentode-
like and triode-like characteristics. From the similarity with

" the space-charge-limited current, where the current is proportional
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to- the square of the applied voltage, they suggested that the
- change in the draln characterlstlcs is due to the 301n1ng of the
two gate reglons underneath the source region durlng the dlffu31on
process. The device is then equivalent to a b;polar transistor
operating beyond the pdnchfthrough point and the current is space--
charge ‘limited. aneeg17 has developed this'idea further and
fabricated a device with NT-N-P-N-NT structure which showed both'
the sPacefcharge—limited operation and the bipolar operation.’

When the analyses of conventional JFETS reported so far are
investigated olosely, they havevan important common feature; They
start from some assumptions about the shape of the channel and the
free carrier conoentration inside the channel. The Poisson‘s equa—
tion and the oontinuity equation afe then simplified and solved
for'the space-charge region‘and the conducting channei separately.
Since the equations are nonlinear partial differential equations,
assumptions ére necessary to obtain an analytic solution;’ As we
_have seen, however, different assumptions lead to conflicting
results. |

Tne pnrpose of the present investigation oan be divided into
two parts. The first;part is to find the physical mechanism of
the current conduction for the devices with different length-to-
width ratios and with different doping profiles along the channel.
For this purpose, an iterative numerical method Wthh can solve
the equations without any assumptions concerning the distribution

of free carriers is developed. The method takes into account the .
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two~dimensional character of the electric field and the variatioﬁ
of the mobility with electric fields. The comparison of the solu-
tions for_various device models will clarify the effects of the
geometry, bias voltages, and the field dependent mobility to the
current conduction mechanism. The solution can also be used to
find the validity of the aésumptions of other analyses.

The second part of the investigation is concerned with the
triode characteristics. The devices considered here have essen-
tially the same geometrical structure as the conventional JFETs.
The study is based on the space-charge-limited (SCL) current for
a one-dimensional NT-N-NT structure. The possibility and the
criterion of obtaining the triode characteristics are investigated

in terms of the parameters characterizing the device.
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'Chapter II: MATHEMATICAL FORMULATION

II-1 Device Model and Basic Equations

Fig. 2.1 shows the geometry of the model of a practical
device with the coofdinateé to.be used later. For simplicity
only N-channel devices will be considered here. It is assumed
that the ptoN junctions at the gate are step junctions and that
the doping profile of the Nt-N junctions at the source and the
dréin contacts are described‘by complementary error functions.
The gate P+-regions are much mofe heavily doped than both N-
and N+—regions. ”

By assﬁming no variation along the Z-direction, the region
of interest is a plane bounded by X = 0, X = Lo’ Y = a, and
Y = -a. The two N+—regions are included in the analysis to
obtain a relatively simple boundary condition and to find out
any possible effect of these regions to the pinch-off phenomenon.
For a dev1ce with a very small lcngth these Nt -regions are of
prlmary 1mportance in that the 1nteractlon of them makes the space-
- charge- ~limited current possible.

-~ The specific device model shown has been chosen to avoid the
complexity of mathematics while retaining the important features
for the device characterization. |

When the electro-static potential and the quasi-Fermi levels
for electrons and holes are choseﬁ as dependent variables,

. . . . 18
Poisson's equation and continuity equations are
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e

72¥ = - 20[N(X,y) - P(X,y) - n(x,y) + p(x,y)] (2.1)
V-Jn = V-L—.. %‘ln(x,y) Mﬁ Vq)n] = R . (2.2)
V-j = V-—- L p(X,y) u_ Vo ] = - R (2.3)

P |« ? p P :

The symbols used in equations (2.1) - (2.3) are defined as follows:

Yy = electro-static potential normalized by kT/q
®, = quasi-Fermi level for elecﬁrons normalized by kT/q
mp = quasi-Fermi level fdr holes. normalized by kT/q
N = donor concentration normalized by ND
P = acceptor concentration normalized by ND
n = electron concentration normalized by ND
p = hole concentration normalized by ND
jn = electron current density normalized by qNDuno Vp/a
jp»z hole current density normalized by qND“po Vp/a
T electron mobility normalized by W .
“p = hole mobility nbrmalized by upo

o = ratio of the pinch-off voltage to the thermal
voltage = Vp / (XT/q)
V_ = pinch-off voltage of the device = qNDaz/(QEEO)

p .
= low field electron mobility

Hno
upo = low field hole mobility
«ND = donor concentration of the N-region

a = half of the width of the N-region
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R net rate of recombination

l

X, Y Xs Y normalized by a

When equations (2.1) - (2.3) are combined with the results of

the Boltzmann statistics

n=-e n (2.4)
p = e p | (2.5)

we obtain a set of equations which, when solved, describes
" non-degenerate semiconductor devices.

@ 1is -related to the ratio of the extrinsic Debye length,

Lop ) /eeokT /a !
a , q2ND N2 o

DE? to a by

The transition from the space-charge region to the neutral channel

19
DE*

as abrupt, we should have at least SLDE/a £ 0.1, which is equiva-

takes place in about 3L If this transition is to be treated

lent to « = 450 or Vp =2 11.6 Volts. For a device with Vp ~ 2 Volts,
which is quite common‘these days, the transition region is about 25%

of the device width. 'Moreover, if the minimum width of the con-
14

as predicted by Hauser™ ',

ducting channel is din the order of LDE

the correct description of the pinch-off is possible only when the

finiteness of the transition region is taken into account.
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_Since a JFET is a majority carrier device, the contribution
of the hole current to the drain current is negligible and the
hole density is always very small'compared to the donor denéity'
in the region of interest. Therefore, the net rate of recombi-
nation can be considered insignificant.» From these considerations,

we may simplify equations (2.1) - (2.5) as

2 ¥- n |
VY = - 2Q'E\r(x,y> - e (2.6)
: ‘l’—tp -
> o1 n -
V.qn = V.[— 5 e Mo chn~ =0 ‘ | (2.7)
9.3 =0 . 2.8
p (-8

Since equation (2.6) is to be applied to N-region only, we have
put P(x,y) = 0.

. It is to be noted that the neglect of the net rate of
recombinaﬁion is equiValent to the zero gate curfent or infinite

DC input impedance.
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IT1-2 One-Dimensional Formulation

.Before going into the detailed discussion of equations (2f6)
and (2.7), a brief summary of the gradual-channel approkimatioﬁ
will be presented in this séction. This will be followed by a
critical review of the approximation and a range of validity will

be estimated.

IT-2-a Gradual-Channel Approximation

The gradual-channel approximation starts from dividing the
region of interest into the space-charge region and the conducting
channel with an abrupt transition. It is assumed that the space-
charge regisn is completely devoid of free carriers and the channel
is neutral. Consider a device with a uniform doping level, i.e.,
N(x,y) = 1, and a large length-to-width ratio. The electric field
in the sPaceQCharge regién is mainly in the Y-direction and the

Poisson's equation is simplified as

a’y
dy2

e

= - 20 Dslyl =1 (2.9

where b is half of.the_conducting chénnel width. (See Fig. 2.3).
Due to the symmetry of the device, we may consider only the upper
half of thé entire region (y 2 0). ©Since the gate P+-fegion is
much more heavily dOped than the N-regién, the space-charge region
iies in the N-region only and the potential along the lipe v =+ 1
is constanE:A When this potential is takén as thé reference, we |

obtain

Yy =1) =0 - ‘ (2.10)
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Another boundary condition for'equatioh (2.9) comes from the
assumption that the electric field inside the channel is in

X-direction only, i.e.,
(=2 =0 S (2.1D)

The solution of equation (2.9) subject to the boundary conditions

(2.10) and (2.11) gives the potential in the space-charge region as

b4 =_—_a<y2— l>.+‘2a<§ y - g 'g <y <1~ _ (2.12)

The potential inside the channel is obtained by putting y = b/a

in equation (2.12).
b\? b
v = o1 - g) Iyl <2 | (2.13)

Noté the implicit dependence of YC upon X through b(x) which is
yet to be détermined.

. Because of the neutrality of the channel and the uniform
doping, the current inside the channel is entirely drift current.

Assuming a constant mobility, the drain current is

b/a
ID = - 2 JO J QX
b/a
2 d¥e '
—afo' Grald | 24
_ b 7/, _bydb
=-4 =5 \d- 3/
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where T is normalized by Qe N. V_. The integration of

D oD p

equation (2.14) yields

2 '.rbs\QIlb | beB /By |
X = zi;[ﬁ('z/‘ ()} -AE) - &) }] (2:15)

and

-4
i

- 2 2 3 3 |
b b b . b
2 [E0) - @D} - @)

D=L [3{<a ey =) - &) (2.16)
where L is the length of the device and bS and bD are half of
the conducting channel width at the source and the drain. respec-
tively. The drain current can also be expressed as a function of
the potential at the source and the drain using equations (2.13)

and (2.16).

where
bS 2
fos = d<l B ??)
b\ ?
YCD = a(l - -a-)
.7
YC = o implies b = 0, i.e., the conducting channel is com-

pletely pinched-off. Since b = 0, it is clear that the above

analysis applies only for YC < o,



Fig. 2.2 shows the drain charécteristics predicted by
~equation (2,17). Here, the drain‘current for YCD ? o has
been assumed to be.constant.

The electro—statié potential as a function of x and y is
given by equations (2.12), (2.13), and (2.15) and the channel
shape, i.e., b(x) is given implicitly by equation (2.15).

These results are shown in Fig. 2.3 for ch = 0, YcD = o,

and L/a = 3. 1In the figure, the electrostatic potential is -

divided by «.

20.
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17-2-b Valid Range of the Gradual-Channel Approximation

Tt was assumed in deriving equation (2.14) that, inside the
channel, the potential is a function of x only and that the charge
neutrality is maintained. These two assumptions, however, are

related to each other by the Poisson's equation.

n=14 = —72 . (2.18)

The second term of the right hand side of equation (2.18), which
will be denoted by sn, indicates the deviation from the charge

neutrality condition of the channel. From equation (2.13),

2 | 2 |
m-[2 @] - 6D @)
The condition of the constant drain current along x gives
ar o, 2 ' 2
T [20-D5 @) G- DRG]0 ew

When equations (2.19) and (2.20) are combined, we obtain

1 -

wio
()

ot E a2 (2.21)

ol

or when equation (2.14) is used

[T —
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.
\

a ‘ '
(2.22)

on = /
36L b \l - —>

In this equation, the drain current is divided by %% which is

the maximum possible value predicted by equation (2.16).
We will adopt a criterion that the gradual-channel approxi-

mation can be considered as valid if én < O0.1. Thus,

. 3LI 2
3. 6 L —z <l - 5/ > (2.23)

A graphiéal method of finding the range of b for which equa-

tion (2.23) is satisfied is shown in Fig. 2.4 by an example.

The left hand side of equation (2.23) is shown as a function

of b/a for three different values of L/a and the current leQel

is indicated on -the right edge of the figure. The example is

3LT
for a device with L/a = 3 and fcr 2aD = 0.7. The valid range

of b for this case is
0.27a < b < 0.98a
From the figure we can observe the following points:
(a) If L/a is small, the gradual-channel approximation is
not valid at all for a high current level. (See the
curve for L/a = 1.)
(b) The range of b increases with increasing L/é and with

decreasing drain current.
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(c) Even fpr a long device, the gradual-channel approximation

is inadequate near pinch-off (small b).
By comparing the foregoing observations with the potential
diagram in Fig. 2.3, one notes that the failure of the gradual—
channel approximation is aiways associated with the two—dimensional‘
field distribution.

It is clear by now that the operation of a JFET near and
beyond pinch-off must be analyzed two-dimensionally. The solu-
tion thus obtained is expected té show the non—zéro differential
drain conductance in the saturation region and the physical
mechanism o% the current conductiqn beyond pinch-off. Another
advantage of this approach is that both long and short devices
can be treated by the same method. Therefore, the effects of the
geometry of the device to the external drain characteristics can

be found. _
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I1-3 Two-Dimensional Formulation

.II—S—a Poisson's Equation

7 Equation (2.6) is a nonlineaf elliptic partial differential
equationlénd has a unique solution when N(x,y),-¢h, and boundary
conditions are given. If an approximate solution Ya is known,
the equation can be expanded in terms of the difference §¥ be-

tween the exact solution and the approximate solution. . Let

=¥+ oY | - (2.24)

2 | a 'n 2 Ya—mn 2
V' sY - 20e §Y = - ¥ Ya-— 2¢ [ﬁ(X,Y) - e ] + 0(8Y") (2.25)

- Neglecting the terms of second and higher order, we obtain a

linear equation for &Y.

Y - ' | Y -0 .
2 @0 sy = - -vzwa - 2q [:N(x,y) ~-e? “] | (2.26)

From an argument similar to that leading to equation (2.10),

the boundary condition for ¥ alongy =1 and y = -1 is

H
o

Y(x,1) = ¥(x,-1) (2.27)

The thermal equilibrium condition at the source and the drain

contacts gives
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By'using equation (2.4), we obtain

. -+ .
' ¥(0,0) = 9,(0,0) + ln<§%> | (2.28)
Y<ﬁ§,0> = /E?’ ) +~ln<§%> (2.29)

_ L . ,
®, {0,0) and o \ \ are determined by the applied bias voltages.

\ V., :
_ / B "B -
cpn(0,0) = o VgS\l - -v_> + o '\-]—; (2.30)
L Vv -
0 — ! B
0 (20) = @ Vg, - v;) + 90,0 (2.31)

where VB is the built-in potential of the PN gate junction. In
these equations, the applied bias yoltages are normalized by VP—VB
because tﬁis is‘what is measured from the terminals. A positive
vgs means a negétive gate voltage with respect to the source and

a positive Vyg means a positive drain voltage with respect to

the source.

It will be shown in section II-3-b that the quasi-Fermi level

for electrons can be treated as a function of x only;

@, = 9,(xX) A (2.32)
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With P, determined by equations (2.30) — (2.32), thg one-
diménsional variation of the Poisson's equation (2;26)_can be
solved along the lines X = 0 and X = Lo with the boundary con-
ditions given by equations (2.27) - (2.29). This solution is
then used as the boundary condition for the original two-
dimensional Poisson's equation.

‘In this way, the boundary conditions are'SPecified along
the boundary of the region of interest rather than along the
lines dividing the space-charge region and the channel as in
the gradual-channel approximation. Therefore, the effect of
the gradual transition between the two regioﬁs for a devicé with
small o wili be seen in the final results. Furthermore, the
‘finmal solution can be used to answer questions such as pinch-off
of the channel and neutraiity of the channel because nothing has
‘been assumed for the electron concentration inside the device.
Another merit of the boundary conditions given above is that the
specification of the bias voltages is sufficient to determine the
operation of the device.

In ChapterdIII, numerical methods of solving eliiptic boundary
value problems will be presénted. In using these methods to solve
equations (2.6) and (2126), the mesh size must be chosen to ensure
engugh accuracy to the final solution. -Since the potential varies
as eXp(—Y/LDE) in the transition region between the space-charge
region and the neutral region, the mesh size should be smaller

than or at most equal to LDE'
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h < L. a

= 2 (2.33)
~ “DE Vor

If a constant mesh size is used for the whole region, the total

number of mesh points M is

2 > 4a — | O (2.34)

‘The devices considered in Chépter IV have o = 50. Lo/a is 10 for
the long devicé and 4 for the short and the graded—channél device.
Therefore, M is in the order of 1000. This large number of hesh
points indicates the difficulty with the method in actual computa-
tion in that it requires a large storage space and long computing

time.
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-II-3-b Continuity Equaﬁioﬁ

| It has been found ffom,experiences in numerical calculations
that an integrated form of equation (2.7) is easier to handle
than coﬁsidering the equation as a differential equation. This
approach is analogous to Gummel's treatment of quasi-Fermi levels
for a bne—dimensional bipolar transistor20 and the discussion in
this section éan be regarded as an extension of Gummel's method
to two-dimensional problems.

Because of the zero gate current, the total current crossing

any plane, x = constant, is the same.

1
J‘ -y n

“1 ‘ - (2.35)

[l
il
I

constant

i

From one—dimensional analyses, it is well known that, for a
reverse biased P-N junction, quasi-Fermi levels can be treated as
constant throughout the whole device with negligibly small error
to the electro-static potential and the majority carrier concen-
trations. To find the degree of accuracy of this approximation

a one-dimensional step P-N junction with.

Ny = donor concentration of the N-region (X = 0)
= lO15 atoms/Cm3
NA = acceptor concentration of the P-region (X < 0)

. [
= 2 X 1013 atoms/cm3
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wn ﬁ-wp = W = width of the N- and P-regions

1.852 Microns

It

Vnp .applied reverse bias‘voltage

= 2.584 Volts
has been solved numerically both with and without the assumption
of constant quasi-Fermi levels. Table 2.1 and 2.2 are the com-
puter outputs of the solutions at some sample points. From the
tableé, we see that the electro-static potential is accurate
to 3 significant.figﬁres for the whole device and that the major-

ity carrier concentrations are accurate to 3 significant figures.
Since the gate junction of a JFET is always reverse biased
and we are interested only in the potential and the majority

carriers, the following approximation will be made:
_ ' s I
@, = mn(x) | (2.36)

Note that this approximation is consistant with the zero gate

current. Let

t

®
T~

Q
<

F ()

(2.37)

(@]
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ELECTRAO-STATIC POTENTIAL

QUASI~FFRMI LEVEL FOR ELECTRONS
QUASI-FERMI LEVEL FOR HOLES
ELECTRON CONCENTRATICN
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4.9685D-06
3,.,88250~11
5.,5582D0—-18
2.1691D-25
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50.0000
50.0000
50,0000

QP/VT

-50,0000
-50.0000
-50,0000
-50.0000
-56.0000
-50.0000
-50,0000
-50.0000
-50,0000
-49.6893
~-35.5146
-18.3756
"301860
ic.0228
21.2573
30,5277
37,8517
43,2626
46,8443
48,8502
50,0000

N/ND

1.1250D-10
9.,2273D0~11
T7.20760-11
5.2044D-11
3,.2801D-11

1.6479D~11
6. T7014D~12

3,1849D0-12
1.9916D~12
1.4380D-12
1.,12210-12
1.2668D~12
1.4508D~12
1.6985D-12
6,0288D-12
3.4198D-08
3. 9776D-05
6.2653D-03
1.3764D-01
5.7180D~01
1.0000D 00

ELECTRO-STATIC POTENTIAL

QUASTI-FERMI LEVEL FOR ELECTRONS

QUASI-FERMI LEVEL FNR HOLES
ELECTRON CONCENTRATTON
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00
00
00
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1,89210
1.94240 00
1.6231D 00
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4,97780-06
5.3095D-11
1.085880~-11
1.,1794Nn~-11

- 1:3440D~11

1.5612Nn-11
1.86060-11

2.2988D-11
2.2965D~-11
4,2583D-11
6.96520-11
1.29710-10
2.2500D-10
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The second equality comes from the symmetry of the problem. The
drain current can now be written as
-, (X) de

1 n n ' :
= = 1 .3
= © F(x) dx (2 8?

Ip

This can be readily integrated to give

) .

-¢_(x) - (4) o

e I =e T 9 4 4 I, J\ P?i) (2.39)
X

where
L
£ = °
o a

By putting x = 0 in equation (2.39), the drain current is expressed as

0 (0) ()

_1le
ID ~ zo (2.40)
dx
o F(x)

where @, (0) and P, (E ) are determlned by equations (2.36), (2. 30),

and (2.31):
/ B A
wn(O) = mn(0,0) = o vgs \l - V_> + O - (2.41)
‘ - p P
o, (L) = @ (——,O) Vs \l - ——) + @ (0,0) (2.42)

The major contribution to the integral in equation (2.40)
comes from the source region where Y is small. As the drain-to-
source bias voltage increases with a fixed source-to-gate voltage,

space-charge region is formed near the drain and almost all the
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pOtential drop occurs there, Thefeforé, the chaﬁge in Y in the
source region per unit change of the drain voltage decreases with
increasing drain voltage which gives the decreasing differential
drain conductance. This is similar to the operation of a
bipolar transistor in common emitter configuration. When the
base-to-emitter forward bias voltage is fixed, an increase of the
collector-to-emitter voltage appears at the reverse biased col-
lector junction leaving the potential distribution at the emittef
ﬁunction unchanged. Since the collector cprrent is contrQlled by
the emitter junction, the collector current becomes saturated.
- The emitter and the collector junction in a bipolar transistor
can be treated separately'in normal bias conditions, i.e., before
punch—through. In a unipolar transistor, however, the source and
the drain regions interact with each other and the small change
in the potential.distribution in the source region with increasing
drain voltage dependé not only on the fixed gate-to—sourée bias
voltage but also on the potential and charge distribution in the
drain region. 1In fact, if the operation of a JFET is considered
és the modulation of conductance between the source and the drain,
the drain region with high resistivity is fhe controlling part.
An important factof in determining the differential drain
conductance beyond pinch-off is the contraction of the size of
‘the region whichvcontributes significantly to the integral in

equation (2.40). This is analogous to the Early effect2l in
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the bipolar transistors and is called "Chénnel Length Modulation"
in the egténded theory of tﬁe gradual-channel approximation.2
The effect of the variation of mobility with electric
field can be seen in equations (2.37) and (2.40). The region
near drain where the potential is high normally contributes
.inéignificantly to the integral in equation (2.40). But in
this region, the electric field is also high, giving smaller
value for the mobility.  This smaller mobility amplifies the
~effect of the.region and decreases the drain current. This
effect, however, depends on the magnitude of the électric field
inside the device. If the dimension and bias voltages of the
device are such that the electric field is in the thermal regiomn,
no effect of the field dependent mobility will be observed. This
is the reason why devices with small length-to-width ratios can.

have both saturated and non-saturated drain characteristics.
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Chapter IIT: NUMERICAL METHODS

In the first section of this chapter, the successive over-
relaxation method of solving linear, elliptic boundary value
problems and generalized Newton's method for nonlinear problems
are presented. The presentation is restricted to two-dimensional
épace and is intended to give only the outline of the methods.
For detailed discussions of these methods and fof other methods

5-28 should be

of solving elliptic equations, the references
consulted. Numerical techniques of handling equations (2.39)
and (2.40) together with the iteration scheme for the simul-

taneous solution of equations (2.6) and (2.39) constitute the

second section.

III-1 Elliptic Boundary Value Problems

ITI-1-a Terminologies and Difference Equations

Let G be a bounded point set whose interior R is simply con-

nected and whose boundary S is a contour. The set of points
{(x+ph,y+qh) ‘ p=0,x,+2, ... ; g = 0,+£1,+2, ..,}

where (x,y) is an arbitrary point of G and h is a positive
constant is called a set of planar grid points. Two such grid
points are said to be adjacent if their distance apart is h.
The set of all lines, each of_which contains at least one pair

of adjacent grid points, is called a planar lattice. Let Gh

designate the set of points which are either planar grid points
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in G or are points of intefseétion of S and the planar lattice.
If a'point is an element of SﬂGh, then the point’is called a
boundary lattice point, and Ehe set of all boundary lattice
points is written Sh' The set of all points of Gh which are
not elements of Sh is called thé set of interior lattice points
and is written R.

Let F(x,y,t,p,q) € Cl for all (x,y) € R and for all real

t,p, and gq. If for all t
F
3 =0

and for all p and q there exists a constant A such that

_a.F_{ A
op aq
then the elliptic equation
2 2
du , du _ pnf du du :
;;7 + ;;5 = F\X’y’u’BX’ay .(3.1)

is said to be mildly nonlineér on R. A linear elliptic equation
will be considered as a special form of a mildly nonlinear equa-
tion. Lst ¢(x,y) € C(S). Then a mildly nonlinear Dirichlet
problem is that of findiﬁg ulx,y) which satisfies the three
conditions: _ o

(a) u is a solution of equation (3,1) on R

(b) u=¢ on S

() u € [CQ(R) n C(G):[
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The fact that a mildly nonlinear Dirichlet problem has a unique
solution has béen established.29 |

The problems of solving equations (2;6) and (2.26) subject
to the given boundary conditions are mildly nonlinear Dirichlet

problems. Since these equations do not have any first order term,

the discussion from now on will be restricted to equations of the

form
2u | aQu
—s + —5 = F(x,y,u) (3.2)
X oy

The fundamental approach of the finite difference method is
to replace the differential equation by a difference equation and
the point set G by G- For this purpose, let points (x,y),
C(x+h,y), (X,y+h), (x-h,y), and (x,y-h) be denoted by double sub-
seripts (i,3), (i+l,3), (i,3+1), (i-1,3), and (i,j-1) respectively.
Let u(x,y) and F(x,y,u) at a point (i,j) be denoted by ui,j and
Fi,j' We try to determine parameters ays 4 =0,1, 2, 3, 4 such

that at (x,y)

2 2
o U + sy au. . + aju, .4+ asu. .4 F
sz ay? 071,37 17i+1,3 271i,3+1
. (3.3)

azis 3,5t %4, 541
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Using the Taylor expansions about (X,y)

U 5+ 31,5 %50l T A, T %M, A
)
_ Ay B, n(a-ay &
= (ag) u1 5 + h(al a3) < T h(a2la4) Y (3.4)
&—O
2 2 .2

+ %— (ay+a3) —:—;g b—-— (ay+a,) ——-g + Z O(h )

Comparing equations (3.3) and (3.4), we obtain

4

a. = - 5

=

(3.5)

The substitution of equation (3.5) back into equation (3.4) gives

2 2

3w 3u _ 1 _ ' 2
A [Fi+l,j SRR TS R PU T I B, B 4ui,j] + 0y (3.6)

Elimination of the term 0(h) in equation (3.6) gives a difference

equation approximation of equation (3.2)

. . u, . U, . . - .o . .= . .
Ul+l,] + i,j+1 + i-1,3] + Ul,j—l %Ul,j +h Pl,j 0 (3.7)

-

where Ui 3 is an approximation of Uy 5 This particular difference
s. )

scheme is known as five-point difference analogue..

ot
"

For other difference schemes, see reference 28.



A numerical method of solving equation (3.2) will now be

presented.

Step 1.

Step 2.

Step 3.

Step,4.

Step 5.

. The problem has now been reduced to that of

equations.

It can be shown that the system

For fixed h =2 0 and fixed (x,y) in R,
cénstruct Gh’ Rh’ and Sh'
Suppose Rh consists of m points and Sh of n
points. Number the points of R with the
integers 1 through m in such a way that the
numbers are increasing from left to right on
any horizontal line of the lattice and in-
creasing from bottom to Cop .on any vertical
line. Number the points of Sh with the

integers m+l, m+2, ... 5 M0,

At each point (x,y) of S, set U(X,y) = @(X,y¥).

If the point (x,y) is numbered K, this is equiv-

alent to UK = ¢(X,y).

At each point (x,y) of Rh’ write the difference

analogue of equation'(3.2). This gives a system

of m equations in m unknowns.
Solve the system of equations generated in

Step 4.

42.

solving a system of

of equations generated

from an equation of the form of (3.2) has a unique solution and

that the solution approaches that of the differential equation

as h approaches zero.,26
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III-1-b Linear Equations

When equation (3.2) is linear, it can be written as

2 2 : o
3825 - £00uy) u = g6y) C(3.8)
fo2d [$)%

where f(x,y) 2 0 for all points in R. Using the same subscripts
as those in equation (3.7), the five-point difference analogue

of equation (3.8) is

| - 2 2 .
U o oo+ UL 0. . 4 U. . . - (4sh%F, H U, . =h7g. . (3.9
141,35 *F Ui,500 * Uge1,s a5 T (0D 1,57 4,3 93,5 (39

For a fixed w, 1 < w < 2, the successive overrelaxation method

is defined by the following iteration scheme. 2>

(t+l) u (e -

1,3 ‘ i3
’ (3.10)
() (t) (t+1) (t+l) 2 (t) 2
u. Lo+ UL u: .+ U 44nh°f, ) Ur"s - hg. .
+ o —itdsd O o S o s S P9 1 ~ ¢ 1,5 %, 91,3
| 44 h £f. .
1]

_where the SupePSCrlptS are iteration indices. The order of appli—
cation of equation (3.10) to each p01nt of Rh is thé same as the
ordering of points in Step 2.

The appearance of superscript (t+l) on the right hand side
of eguation (3.10), when combined with the ordering of the com-

putation, implies that the improved values are used as 500N as

they are cbmputed. It is clear that the ordefing of computation
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is an important factor detérmining the convergence of the method.
More rapid convergence can be realized with consistent order-

. 23,24,27
ings.

For a five-point difference equation, an example
of the consistent ordering is that defined in Step 2. 1In the
discussions to follow, we will always assume a consistent ordering.

To study the convergence property of the method, we write the

system of linear equations generated in Step 4 as a matrix equation.
AU = ~ (3.11)

where U is the column vector with Ul, Uz;”...'; Um as its eléments.
Note that the boundary conditions are included in the column
vector k. From equation (3.9), we observe that the matrix A is

symmetric if every point of Gy, is an element of the set
.{(x+ph,y+qh) | p = 0,%£1,%2, ... ; q = 0,£1,%2, ... ; (X,y) € R}

Suppose we paint the points of Gh with two different colors such
that the points of every paif of adjacent grid points have different
colors.25 Then it is easy to see that, by reordering the points

of Ry s A can be changed into

S

Bo1 Poo

where A and A are diagonal matrices.

1,1 2,2
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Such a matrix is said to have "Property(A)“.23 In the following
discussions, it will be assumed that the matrix A is real,
symmetric, positive definite and has Property(R).

Let us subdivide A into three matrices

A=B-P - pr (3.12)
where
al,l 0
B = a2’2 N i )
0 a
- 0 o
—a2’l 0]
p o= |7¥s,1 %32 ©
f g N
N
f i N
ol _at
L am,l am,2 O_

The method of simultaneous displacements is defined by

ul™ ) - p7ep +pHul® 4k (3.13)
Let -’

H(t) - U+ S(t)

MB = B—l(P + PT)

: C . . )
e(t) is the error vector after the t n iteration. The successive
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error vectors are related by

(1) =1l =Sl (38

(t)

It can be seen from equation (3.14) that U converges to U
independent of 9(0) if the spectral norm (the maximum of the

moduli of eigenvalues) of MB, % , is less than unity, i.e.,
X o< 1 . (3.15)

.Moreover, the convérgence is faster if X is smaller. For.the
difference equations derived from an elliptic partial differential
eduation of the fofm (3.2), equation (3.15) holds independent

of h.26’27

The successive overrelaxation method defined in equation (3.10),

when written as a matrix equation, is

— —

a(& D) _ (8 w[B'l(Pg(t+l) « Pu® LK) - gmj (3.16)
The error after t iterations is

g(?)_— L, g(t_l) = LS g(o) (3.17)

where .

L, = (T -mB“lP) {(1—(») I+ wB_‘lPT}- (3.18)

Tt can be shown that successive overrelaxation method converges

to U independent of 9(0) if the method of simultaneous displacements
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converges.z3 Let the eigenvalues and eigenvectors of Lw be
denoted by u and Yio i.e.,

Ly¥3 = My 1=h2 eeenm (3.19)

Let i be the eigenvalue with the largest modulus. Expanding 9_(0)

in terms of the eigenvectors y, and substituting it into equa-

tion (3.17), we obtain

(e) _ t '
£ - Lw Z a; Y4
i=1

Lty (3.20)

i
™1
o]

[N
i

<
l_l

m
t /M
neoL oA \n /L
i=1

As t increases the eigenvectors with eigenvalues smaller than

mn damp out with respect to y,.

(t) = \
e ———>‘nl ay; ¥y (3.21)

If w # 0, a nonzero eigenvalue of Ly Mo is related to an eigen-

N, by23s24:27

value of MB ’

2 }\Z

(n+w - 1)2 = w A (3.22)
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~The optimum relaxation factor Wy for which the spectral norm

of Lw is the smallest, is found ffom equation (3.22).

) .
1+[ :l (3.23)

144 1-%

To find Wy numerically,27 we -choose w5 which is less than
an anticipated W . (For example w, = 1.) Iterate with succes-
sive overrelaxation with w = W The convergence rate is

measured in terms of

L(0) [ - s

6(t—l) Hu(t_l_) _ U(t-z)nj 2
T (3.24)
[1e® - 2]
Lt -]
where H i indicates the Euciideaﬁ length of a vector. Using
-~ equation (3.21), we obtain
S () , K )
—_— . 3.25
Aé(t -1) ™ s W (

The spectral norﬁ of MB can now be evasluated frém equation (3.22).

(nl,w + Wy - 1)
0

177 (3.26)

)
o} nl,wo

Wy is then computed by equation (3.23).



I1I-1-c Nonllnear Equations

If equation (3.2) is nonlinear, th

generated in Step 4 is also nonlinear.

49.

e system of equatlons

3.27)

(3.28)

fi(ul,'uz, cee 5 U ) =0 i = 1,2, eee , M (
afl
Let f. i = BU # 0. Then for a fixed, real constant w, the
generalized Newton's method is deflned by the following
iteration Scheme.26
() () (v)
U(t+l) - U (t) _ fl(u 5 ur 5 ®e0e o Um )
ll ? ' m
‘ . (t+l) ue) ()
2 -T2 (U(t+l) U(t) U(t))
22 ’ 2 , * e 0 @ ’ m
: : _ (t+1) ,(t+l) (t+l) (t)
I S D (DR e R e S Upsp " Uy )
m- T m (U(t+l) U(‘c+l) U(t+l) U(t))
> 2 s e 00 2 m- l > m
where E(o) is the initial approximation. Note that this iter-

_ation scheme reduces to successive overrelaxation method for a

linear case.

The generalized Newton's method has been used

successfully to solve equation (2.6) with w determined by the

same process as in the linear case and with arbitrary initial

approximation.

mation, Ya, of equation (2.26).

This solution may be used as the sLartlng approxi-



SO'

IIT-2 TIntegration Technique and Simultaneous Solution

Due to the large magnitudes of the bias voltages of a JFET,
the electro-static potential varies over such a wide range'that
the integrénds in equations (2.37), (2.39), and (2.40) become
larger than the largest number which can be handled in most
digital computers.30 This difficulty can be removed by dividing
the interval of integration into smaller subintervals and choosing
appropriate reference levels for the subintervals, |

Let

N |
E(x) = - an HO6YIH0S0) gy (3.29)
L1

F(x) defined in equation (2.37) and E(x) are related by
P(X) — e\y(xao)_g(x) (3.30)

Since Y¥(x,y) - ¥(x,0) =0 for -1 =y <1, the integral in
equation (3.29) Can-be.handled by a computer.
Let the interval 0 <X < ﬂo be divided into M subirntervals

T i:l’ 2, 3, s 0 e ,M-‘

i’
» . )
T, :.{x\ 0.5x €%+
(3.31)
e ! | <x x,} i = 2,3 M
Ti — LX Xi-—l - i{l ":]_ — s s e e 3
where
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Let also QNi be the.referenée level for P in the interval Ti'

When Ti and_QNi are chosen appropriately, the integral

X. .

1 : )
f exp [— ¥(t,0) + Q¥ + é(t)] dt i= 1,2, «.0 5 M
X _ : ‘

i-1
can be evaluated without any difficulty. TLet
: zo
W(x) = f exp [— ¥(t,0) + QNi + %(t)] dt x G‘Ti (3.32)

X

In terms of W(x), mn(x) and ID are ST T

~

-~ (4 )+QN, |
e W(x)] x €T, (3.33)

mn(x) QNi - 1ln [é

“o (0)4QNy B (A)+Ql
e - e

W(o)

(3.34)

ID =

RIH

 If the integrand of equation (3.29) is written as
exp [ﬁ(x,y) —'Y(x,o) + 1n H;]

it.is of the same funétional form as the integrand of equation
(3.32). Therefore only one subroutine/}s necessary for the in-
tegrations. The integration by Gaussian quadrature with the
argument of the exponential function approximated by a quadratic

function has been used.
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The dependence of the drift velocity on the electric field,

E, is usually described by7

v «< E E < Ecl (Thermal)
1/2 ] ' .

v «E Ecl <E <E,, (Tepid)

vV =V E < E (Hot)

where vy is the saturation velocity and Ecl and EC2 are two
critical fields. Their values for n-type silicon are

ECl = 2.5 Kv/cm and Ec2
tion has been proposed by Denda and Nicolet31 which contains only

= 15 Kv/cm. A somewhat simpler descrip-

one critical field and gives the drift velocity for the whole

range of electric field by a single function.

. -E/EC .
v = vs(l - e )y (3.35)

For a small electric field, equation (3.35) can be ‘approximated

by
: _ E . :
V=V (3.36)
C -
which gives
Ve '
Pao = E (3.37)

When the experimental I‘esults32’33 for v, and'uno

1.05 x 107 cm/sec

<
i

1350 cm2/Volt—sec
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'.are ﬁsed in eduation (3.37), EC has the value between Ecl and
E e

EC = 7.77 Kv/cm
.The normalized electron mobility, Mo is obtained from gqua—
~tion (3.35) by di&iding it with the electric field.

-E/E, v ‘
l-e (3.38)

A revised form of equation (3.38) suitable for the machine

calculation’

_ 1lE -4
by =1 -5 E/E, <10
C .
(3.39)
“E/E
Mn “E/E, c

will be used in actual computation.
We now describe the iterative method to solve equations (2.6)
and (2.39) simultaneously. The variations of the two equations,

which are to be used in the computation, are collected here for

convenient references. S
2 | Y_wn | | ‘
VY= - 2a[ﬁ(Xﬂw - e ] o (3.40)
- Y - ¥ -t
vy - 20 & 1 2

6YA: - VY - 2« [N(X,Y) - e @ n] (3.41)



¥ :.Ya + 5?

' ~-tp_ (4 )+QN,
| ¢5(X),: QU - 1n [e n-o +

- (0)+QNy - (£ )+QNy
T :.}.e - €
D o W(o)
4
o}
W(x) = | . exp [- ¥(t,0) + QU + g(t)] dc  x €T,
X _
1
E(x) = - 1n Jr exp [Y(x,y) - ¥(x;0) + 1In un] dy
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(3.42)

+ QID W(x)] X E'Ti (3.43)

(3.44)

(3.45)

(3.46)

The first step is to obtain the boundary conditioné by solving

equation (3.40) one-dimensionally along X =0 and X = LO

cussed in section III-3-a using the generalized Newton's

The iteration of this method is terminated when

wax  |¥$8) - (5P| < Epsp
(%) € R
where EPSB is a small constant to be determined from the
of the problem.:
The overall iteration scheme starts from a guess of

quasi-Fermi level for electrons, wn(o)(x). This is used

as dis-

method.

nature

the
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determlne the sizes of the subintervals and the reference levels

Equation (3.40) is then solved for Y with @, = =9, (o) by the

->generalized Newton's method. Let the solution be denoted by Y(l).
An improved solution for ©. Py (1 ), and the drain current I (l)
are computed using equations (3.43) - (3.46) with Y = Y(l). By

solving equation (3.41) for &Y by successive overrelaxation method
with ®n mn(l) and Y = Y(l), the improved electro-static poten-
tial ¥(2) is obtalned from equation (3.42). @n(Q) and ID(Q) are
then computed from Y( ). The above iteration scheme can be
summarized as follows.

© (o) (3.40) > Y

T

Note that there are two kinds of iterations in this process,

(3.43) - (3.46)

(3.41) , (3.42)

i.e., one for solving equation (3.40) or (3.41) ahd the other
for the overall solution. The former may be called as 'inner
iterétion' while.the latter as 'outer iteration'. Let t and k
denote the iteration indices for the inner and outer iterations

respectively. Let

e o e b B A Y WL
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EEr(®) = Max \ s¥(E)  gy(ED) \
(Xy)e R, . ‘
omax () = Max \ gy() \
(X,¥y)ER
n
' () (X
Y-
2.,(k) n
- VY - 20 | N(X,y) - e
RMAX(k> = Max ‘ [ ‘
(X;y) € R, 20 N(X,¥)

The following conditions are used to terminate the various

itera;ions.
Max L8y (B-1) | L ppsT  for (3.40)
(x,y) € R
eer(®) 7 ouax(®) < e for (3.41)
RMAX(k) < EPS for oute? iteratign

where EPSI, EPSD, and EPS are some specified small constants.
Because ¥ is normalized by kT/q, |¥| is in the order of
\Y ) . .

& = ET%H . The devices considered in Chapter IV have o = 50.

From these considerations, EPSB and EPSI are chosen as

-4 -

- EPSB 10

I

EPST = § x 107>

i

3ince the boundary conditions require more accuracy, a smaller
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number has been given for EPSB. EPSD ié a measure of the relative

accuracy and | | |
EPSD = 1of2

is used. The accuracy of the final solution is determined by EPS

and‘the choice of EPSD is somewhat arbitrary. The value of EPS

may be chosen by observing the convergence of the drain current.

Fig. 3.1 shows the convergence of ID(k) and the reduction of

RMAX(k) for the short device considered in Chapter IV with VgS =0

o} . .
~and vds = 1. mn( ) for this example is

wn(o)(X> = wn(o) + [ (2) = v, (0)] fi

From the figure, we see that

EPS = 1073

may be used for this example. From similar considerations, the
above value of EPS has been found to be useful for the devices

in Chapter IV and V.

).
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Chapter IV: DEVICES WITH UNIFORM AND NON-UNTIFORM
DOPING PROFILE IN THE CHANNEL

The method developed has been applied to two silicon devices
with uniform doping profile in the channel and the same o but

gifferent L/a ratios. The parameters of these two devices are
N_. = donor concentration of the N-region

D
15 3
= 107~ atoms/cm

NE = donor concentration at the source and the
- . 15 3
drain contacts = 5 x 10 atoms/cm
NA :vacceptor concentration 6f‘£he P-region
= 1017 atoms/cm3
a.: 50
L/a =2, 8

The device with L/a = 2 will be referred to as 'short device'
vhile tﬁe one with L/a = 8 as 'long device'. Another device
with the same parameters as the short device but with non-uniform
doping.profile'along the channel is also considered. This device
will be called the 'graded-channel device'. ‘Vp and a for these

devices are computed by

Vv = o XL = 1.293 Volts
p q .
2€EOV
a= N = 1.310 Microns

D
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The small value of  and the low doping level in N+—regioné
have been chosen mainly for.the simplicity of ﬁhe numerical com-
putation and reasonable computing time,* More realistic values
'may be chosen at the cost of thesé féctors, For the‘shorf and
the long device, a cdnstant'mesh size egual to'half of the in-
trinsic Debye length in the N-region is used for all bias con-
ditions. This mesh size is 1.11 times the extrinsic Debye length
in the N+—regions. The mesh size for the graded-channel device
has been chosen to be bne third of the extrinsic Debye length in
the N-region. Since‘the size of -the N+—region at the source con-
ﬁact ié larger for the graded-channel deéice (see Fig. 4.16), a
smaller mesh size than the short and the long device is necessary.
The mesh size chosen is equal to 0.745 times the ektrinsic Debye
length in the N+—regioﬁs.

The computation has been carried out on the IBM System
360/91. The program has been written in FORTRAN IV and compiled
by the FORTRAN G coﬁﬁiler. When thé mesh sizes are chosen as
discussed above, the total memory requirements are approximafeiy
250K bytes for the long and the graded-channel device and 150K

bytes for the shdrt_device. The computing time depends on the

it L ' )
Larger & requires more storage space and computing time.
Higher doping level in N+—regions requires the use of

. different mesh sizes in N- and N+7regions°



rate of convergence of the iteration schemes and the first

approximation of the quasi-Fermi level for electrons. It has

61.

been observed that the convergence 1is faster for a smaller drain

current. For the example shown in Fig. 3.1, the CPU time is
about 3 minutes.

The accuracy of the results has been tested by solving
the short device with vgs = 0 and Vds = 3 with the mesh size
equal to that of the graded-channel device, i.e., with the
mesh size reduced by 2/3. The difference between the two
results is less than 1%. Thé choice of the mesh size, there-

fore, is considered to be appropriate.

e e o v AT A S P LTS A T
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IV-1 Devices with Uniform Doping Profiles

" Fig. 4.1 shows the distribution of tﬁé ddnor concentration
for the short device with the precise definition.of.L to be used
for the L/a ratids. As can be seen in the figure, the source
and the drain N+—regidns ére excluded in the definition of L so
that L is the length of the N-region. Except for larger L, the
donor distribution is the same for the long device.

In Figs. 4.2 through 4.25, the signs and the normalization

constant of the bias voltages are the same as in equations (2.30)
and (2.31). The electro-static potential, and the electron den-

D

Figs. 4.2 and 4.3 are the drain characteristics for the

sity are normalized by Vp and N respect?vely,

short and the long device fesPectively. In these figures, the
drain current is normalized by Shcokley's saturation current.

The results of the gfadual-channel approximation are shown by

the dashed curves for comparison. The source and the drain
resistance have been included in the gradual-channel approxima-
tion by matching the slope of the two curves at the origin. The
computed results are significantly different from the result of
the gradual-chanﬁel approximation in the saturation region. The

- reason for thié difference can be seen most clearly in Figs. 4.8-a
and 4.14-a which show the electrén concentrations on the X-axis
for the short and the long device respéctively for the bias con-
‘ditions V ¢ 7 0, and V, = 3. The minima of electron concentration

ds

in these figures are n = 0.632 for the short device and n = 0.168
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. for the longvdevicé. Since the bias condition is well beyond
the‘pinch-off point, the minimﬁm of the electron concentration
on the X-axis predicted by the gradual-channel approximation iél
’negligibly small. E This significant departure from the gradual-
channel approximation regarding the electrén concentration
appears in the drain characteristics as non-zero differential
drain conductance. It caﬁ also be seen that the gradual-channel
approximation is a better approximation for the long device than
for the short device regarding not only the drain characteristics
but also the distribution of the electron concentration.'

The maximum of electric fieldsvin X-direction for the bias
conditions considered before are 12.3 Kv/cm for the short device
and 11.2 Xv/cm for the long device. Therefbre, the drift velocity
of the electrons is not saturated.completely"for both devices but
is in the tepid region. Consequently, the saturation of the‘drift
velocity is not the dominant factor in determining the drain
charéctefistics of these devices. As compared to the long device,
the larger differential conductance for the short device is due
to the smaller L/a ratio.

" Comparing Fig. 4.7 with Figs. 4,5 and 4.9 we see that the
poLentlal dlstrlbutlﬁn is almost unchanged in the source region
as the draln bias voltage is 1ncreased It is more apparent for
the long device as can be seen in Figs. 4 13 and 4.15. This is
a well known fact and is the cause of the saturation of the drain

current. (See equation (2.40).)
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The effect‘of the bias voltages to the distribution of the
electron concentration can be seen in Figs. 4.4, 4.6, 4.8, and
4.10 for the short device and in Figs. 4,12 and 4.14 for the
long device. The first point to be noted is that the transition
from the space-charge region to the conductive channel is not
abrupt. In order to facilitate the discussion, we define the
'channel' as the bportion of the region surrounded by the source,
drain, and gate where the free carrier concentration is greater
than half of the impurity concentration of that region. There-
fore, the maximum possible channel length is L and the maximum
possible channel Qidth is 2a. (See Fig.u4.l.) Table 4.1 gives
the minimum channel width and channel length for both the short
and the long device at various bias conditions. In this table,
the channel length modulation can be seen clearly. It can also
be seen that, for the short device, the channel is not<pinched—

off, i.e., the channel length is L, for Vgé = 0 and V < 3, The-

ds
zero channel width iﬁ this table only means that the eleétron con-
Centration.becomeé less than O.SND along the X—axis and does not
mean the total depletion of the eiectrons.' From Figs. 4.8, 4.10,
4.12, and 4.i4, we see that there is always a conduction path

with appreciable electfon concentration connecting the source

and the drain contacts. In Figs. 4.8;74.10, and 4.14, the
electron concentration in the drain-N+—region is significantly

smaller than that of the thermal equilibrium condition. This

e . . . + .
indicates the space-charge region in the drain N -region.
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V.
gs
. 0.0 0.5 1.0
vds
0.220a
1.0 2a 1.16a
0.126a
2.0 2a 1.07a
0.110a
3.0 24 1.05a
Table 4.1-a Minimum channel width/channel
length for the short device
\Y
gs
0.0 0.5 1.0
Vds
) 0
1.0 7.07a 4.09a
0
2.0 6.49a 3.80a
0
3.0 6.25a 3.69a
Table 4.1-b Minimum channel width/channel

length for the long device
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This space-charge region is‘particularly:iﬁportant for the‘model
chosen here because of the large potential drop in the region.
If there were no space charge in the drain N+—region, complete
depletion of electrons near drain would be necessary to support
the large drain potential,’ This result'is.the consequence of
including the N+—regions in the analysis.

The effect of the gate bias voltage can be seen.by comparing
Figs. 4.8 and 4.9 with Figs. 4.10 and 4.11. The channel width
and the electron concentration decrease uniformly from the source
to the drain with increasing gate bias voltage. In fact, the
operation of a JFET with a non-zero gate voltage can be inter-
preted as the operation of another JFET with correspondingly
smaller a and zero gate voltage.

The major advantage of the present method is that it gives
the potential distribution and the free cerrier distribution
directly from the geometry of the device and the bias conditions
- without any intermediate assumptions.. The method, therefore, |
can be used to explain the conflicting descriptions of the channel
shape after pinch-off. According to Wu and Sah6 the channel is
essentially neutral and completely pinched—off when the drain
voltage is greater then the pinch-off voltage. The finite dif—
ferential drain conductance is attributed to the channel length
modulation. Hauserl4, on the other hand, assumed. a minimum
channel width of.the order ofIZLDE at pinch-off. Further increase

in drain voltage decreases the free carrier concentration in the
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'chaﬁnel. The resﬁlts of the presentnanalysis are in general
agreement with Hausér‘s qualitative description. The results
also show that the neutrality and the éomplete pinch-off of
the channel are not strictly accurate. They can, however, be
regarded as first order approximations and the channel leﬁgth
modulation can be seen with a proper definition of the channel.

Tt has been found that the saturation of the drift velocity
has not occurred for the particular model chosen and for the bias
conditions considered. By noting the poor saturation of the
drain current of the short device, we can conclude that a.good
saturation of the drain current of a short device is due to the
drift‘velocity saturation.

The computed drain characteristics shown in Figs. 4.2 and
4.3 are now compared with the experimental measurements in terms
of the differential drain resistances. The test units are 2N3459
fpdm Siliconix Incorporated. The values of fhe pafameters for
these devices are

V_ = 2.7 Volts
V. = 0.7 Volts

L ~5.1 Michns
a ~ 0.8 Microns
From these data, we find
| — L/a ~ 6.4

VB/Vp = 0.26
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7

On the other hand, the device models used for the theoretical
camputation have
L/a =2 and 8

Vp/V_ = 0.536

Théfdifference in VB/Vp ratios between the device model and the
test unit can be taken care of by reverse biasing the gate junc-
tion of the test unit properly. Then, the normalized differential
drain resistances of the test units are expected to have values
between those for L/é = 2 and those for L/a = 8.

The differentiai drain resistancesAbf'thé device models
obtained ffbm the computed drain characteristics with VgS =0
are shown in Fig. 4.16. The results of two experimental units

with Vgs determined by

<|<1
s]

B _ ( )
P ») test unit “pl/ device model

are also shown in the figure for comparison. In the figure, the
differential drain resistances and the drain-to-source voltages
are normalized by vp/IDO and Vp respectively where

2a

I = == QU NDVpZ

DO 3L no S

7 = width of the device in Z-direction
The values of ibo for the test units have been determined by the

experimental procedure used by Wu and 8ah6o

As can be seen in the figure, the experimental results for
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L/é ~ 6.4 lie between the two lineé for L/a = 2 and'L/a = 8.
Because of the fabfication proceés, the L/a ratios and the
doping levels vary slightly for the test units. This is con-
sidered to be the cause of the variation in drain characteris-
tics between the test units.

Although the comparison made here is crude, it clearly shows
the.correct order of magnitude and the dependence of the computed
differential drain resistances on the drain-to-source Qoltages.
From these observations, we can conclude that the device model
and the numerical method developed are adeduate to-describe the

steady state DC operations of various JFETs in detail.
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1y-2 Graded-Channel Device

The devices with very small leﬁgth—to-width.ratios can be
constructed by lateral diffusion of the source N+—region and the
gate P+—re§ions into the N-type epitaxial layer which is grown
over the Nt substrate.13’16’34 As a result of this process the
impurity distribution is non-uniform along the channel and the
current fiows parallel to the gradient of the impurity dis-
tribution.

To study these devices, a device model with the same di-
‘mensions as the short device and with the distribution of the
donor concentration as shown in Fig. 4.17 is analyzed in this
section. In the figure the donor concentration is normalized
by ND = lOlsbatoms/cms, Although the model chosen here is some-
what unrealistic due to the low doping level in the N+—regions,
the results are significantly different from those in the previous
section and indicate the possibility of a SCL—triode.which will
be the subject of the next chapter.

_Fig. 4.18 shows the drain characteristics of the device.
The dashed curves are the results of the gradual-channel
| ~ approximation with L/a = 0.794. This value is obtained by
defining L of the de&ice as the length of the region where
N(x,O) < 1.05. Due to the low doping level in the N+-regions
the drain and the sburce resistance ére large. The effect of

these reslstances are seen in the gradual ~channel appPOleatlonS

as the shift. of the saturation point to the Dtht of the figure.
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The comparison of Fig. 4.204with 4.2é and Fig. 4.24 with
4.26 shows a considerably large change in the potential dis-
tribution in the source region with increasing drain voltagé.
This appears in the drain characteristics as the large differ-
ential drain conductance. The maximum electric field in
X-direction for vgs = 0 and Vs = 3 is 13.3_Kv/cm and the
drift velocity is not saturated. The field dependent mo-
bility, therefore, is not an important factor for the oper-
“ation of the device up to the bias condition Vds = 3,

The most interesting result of thewdevice is the variation
of the diatribution of the electron concentration with the bias
voltages. From Table 4.2, we see that for small drain voltages,
the electron concentration in the conductive channel decreases
with increasing drain voltages while for large drain voltages
it increases with increasing drainbvoltage. In Figs. 4.19, 4.21,
4.23, and 4.25, we also see that the distribution of the electron
_concentration is similar to that of the short device for small
drain voltages while it is significantly different for large
drain voltages. It can be concluded from these observations
that a new current conduction is in operation for large drain
voltages, i.e., the SCL current starts to build up. Because of
the low doping level of the source N+:region and the gradual
transition from the source N+~region to the N-region, however,
the SCL current is not dominant_for the device. This is also

seen in the drain characteristics. If the SCL current were



gS

0.0 0.5 1.0
Vds
0.1 0.9194 0.7011 0.2706
1.0 0.8217 0.5280 0.2096
2.0 0.9160 0.6188 0.2958 .
3.0 1.0160 0.7185 0.3754
Table 4.2 Minimum electron concentration

on the X-axis for various bias

conditions

94.
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dominant, the drain cufrént Qould be proportional to the square
of the drain voltage which gives the triode characteristics.
The drain characteristics shown in Fig. 4.18 are the result of
the competition of two different physical mechanisms; the normal
field-effect transiétor‘operation where the free éarrier concen-
tration in the conductive channel decreases with increasing drain
voltage and the SCL current where it increaseé with increasing
drain voltage. Previously, the large differentiai drain coﬁduc—
tance was attributed to the large change of the potential dis-
tribution in the source region. This, however, is due to the
incfease of. the electron concentration in the channel.

The ratio of the length of the N-region to the extrinsic

Debye length, L/L is about 8 for this device., If the NT-N

DE?
junction at the source is abrupt and L/LDE is decreased, the
drain and the source N+—regions will interact with each other

and the SCL current can easily be realized. A device satisfying

the above conditions will be considered in Chapter V.
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Chapter V: SPACE-CHARGE-LIMITED TRIODES

Besides the experimental works of Teszner and Gicquel16
and Zuleegl7, there are also some theoretical works about the
insulated-gate FETs with triode characteristics. Geurst35 has
analyzed the insulated-gate FETs by choosing a symmetric device
model where the current flows on the center line of the device.
By using the tﬁeory of complex variables, the Laplace's equation
is solved rigorously in the insulator gate region with the non-
linear boundary condition given along the center line. The

solution giVes a transcendental equation and the drain character-

istics are obtained by finding the roots of the equation. Neumark

36, 37 have noted that the transcendental equation has

and Rittner
two sets of roots of physical interest and that the choice of a
set of roots gives either the pentode-like 6r the triode—;ike
characteristics. These analyses ar® purely mathematical and lack
the physical understanding of the device operation.

We have seen in section IV-2 that the interaction of the
source and the dréin N+—regions gives the SCL current. This 5CL
current is similar to that observed by Gregory and Jordan38 in
their PY-P-P" structure. The SCL triode considered in this chap-
_ter is based on the SCL current of the one—dimensionai N+—N—N+
structure which is analyzed in the first section. in the second
section,.the effect of a gate P-N junction is combined with the

results of the first section to obtain the triode-like character—

istics.

L Aot ae, ey ] B N e, VY
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V-1 One-Dimensional NT-N-NT Structure

The SCL current can be realized in either N'-p-N” or
N+-N—N+ structure,. The former is equivalent to the bipolar
transistor with floating base operating beyond punch-through.
This structure forms the basis of Zuleeg's SCL triodel7 and 1is

1 In this section, the N+—N—N+

rélatively well understood.3
structure is discussed including the effect of the fixed space
charge of the residual donor concentration and the field-
dependent mobility.

Fig. 5.1 shows the model of this structure. The doping
profile in the N- and the N+—regions is constant and the NT-N
junctions are step junctioﬁs. The size of the N+—regions are
large enough to have the thermalvequilibrium condition at X = 0
and k = LO. According to Gregory and Jordan38, the crossover

between the Ohmic and Child's law regions occurs when the applied

bias voltage is approximately equal to the crossover voltage, vn.

q_NDL2
vV = : ‘ (5.1)

o Zee

where ND is the donor concentration in the N-region and L is the

length of the'N?region. The equations describing the structure

are the one-dimensional forms of equations (2.6) and (2.7):
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2 Y-o

d”y .
__..Z: - QB N(X) - e I'l:] (5'2)
dx :
J_ o Y- deo ,

0 n n .

Pt ———— O .3

J B e S constant (5.3)

where J is the current density and

v
B=
Jo = = A Mg Np V /L

The linear dimension, X is normalized by L. All other symbols
have the same meaning and the same normalizing constant as in

equations (2.6) and (2.7). Integration of equation (5.3) gives

e u T dx (5.4)

' 2
00 ) g f ° -y -1
JO y n

L ‘
where zo = 7? . Putting x = 0 in equation (5.4), we have

3 e—wn(0> ] e-wn(ﬂo)
°© -y a1
e My ax
o .

The boundary conditions for equation (5.2) are obtéined from the

applied bias voltage and the thermal equilibrium condition

[

.
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at X =0 and X = L_.

o
N+
D
¥(o) = o _(0) + In T (5.6)
D
N
Y(zo).: v (4) + 1n NE (5.7)
v o
o (40 - ¢ (0) = B G - (5.8)

where Ng is the donor concentration innfﬁe N+—regions aﬁd V is
thevapplied bias voltage.

By applying the method developed in Chapter III, equa-
tions (5.2), (5.4), and (5 5) are solved numerlcally with the
boundary conditions given by equations (5.6) - (5.8). The

parameters of the particular structure considered here are
3
.ND = lOl atoms/cm3

: Ng =5 x 1017 atoms/cm3
L = 8.285 Microns
B = 20

V = 0.517 Volts

The length of the N-region, L is 6.32 times the extrinsic Debye
length of that region. Since a small deviation from the thermal
equilibrium condltlon is damped out in about JLDE, L is small

enough for the two N —reglons to interact with each other. The
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size of the N'-regions is 0.148 Microns ana:is about 25 times
the extrinsic Debye léngth of that region. Therefore, the
thérmal equilibrium condition is satisfied at the contacts.
Because the problem is one-dimensional, different mesh sizes
in N— and N+-regions can be used without much difficulty. Tﬁe
mesh sizes are chosen such that the ratios of the mesh size to
the extrinsic Debye length are 0.0253 in the N-region and‘0.632
in the N+—regions.

When the mobility is assumed to be a constant and when the
fixed space charge due to the donor impupities is neglected, an

4
appx‘o_ximate_analysis"9 gives the SCL current as

2
_ 9 (V. , 9
J = e JO \T > v >> VIL (5.9)

n

TIf the electron concentration in the N-region is assumed to be
equal to the donor concentratioﬁ for small bias voltage, the

current in the Ohmic region 1is
=13, () V<<V (5.10)

Fig. 5.2 shows the computed I-V characteristic. The current
densities giQen by equations (5.9) and'(S.lO) are also shown

in the figure by two straight lines. In the figure, the current
denéity is nor@alized by 9JO/16. Due to the factor 9/16, the

" two straight lines intersect each other when the applied voltage

oy e”‘}

iR
\
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is greater than the crossover voltage. The larger current of
the computed result in the linear region is due to the inter-
action of the two N+—regions, which gives greater electron
concentration than the donor concentration for the zero bias
voltage. Denda and Nicolet31 have showh that for the three
cases of thermal, tepid, and hot charge carriers the asymptotic
' dependences of the I-V characteristics are power laws of V2, V3/2,
and V,.respectively. For the model considered here, the electric
field at the point where the electron concentration is minimum
is 15.77 Xv/cm When vV =15 an Therefore,.the eléctric field is
in the tepid region for most of the N-region and the rate of
increase of the current with increasing voltage is smaller than V2.

The distribution of the electro-static potential in the
N-region is shown in Fig. 5.3 for various bias voltages. In this
figure and in Figs. 5.4 and 5.5 the origin of the X-axis is shifted
to the metallurgical junction of the left NT-N junction. The
slight decrease of the potential near X = 0 is due to the built-in
potential of the NT-N junction.

Fig. 5.4 shows the electron concéntration in the N-region
for several bias conditions. The increase of the electron con-
centration with increasing bias voltage is glearly seen. It is
aiso to be_noﬁed that the electron deﬁ;ity tends to become constant
with increasing bias voltage. This is due to the field dependent

mobility and when the drift velocity is completely saturated, the

electron density should be a constant. This is conformed by
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coﬁsidering another N+—N-N+ structure whicﬁ has the same crossover
voltage but has a smaller length (L = 2,62 Microns). Fig. 5.5
shoWs the electron density and the electric field when V = ;5 Vn.
It is élearly seen in this figure that the electron density is
constant when the electric field is greater than about 25 Xv/cm.
The curgent has been found to increase more slowly for this struc-
ture than for the one considered before. This is in agreement
with the.asymptotic dependence of the SCL curreht‘for hot charge

carriers.
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V-2 Triode Characteristics

Tn this section we consider a symmetric device in which
the N"-N-N" structure discussed in the previous section 1is
sandwiched between two heavily doped p* gate regions. Let
the width of the structube be 2a. This device will be called
the 'SCL triode'. The geometrical structure of this device
is essentially the same as a normal JFET with pentode-like
characteristics. The important difference is the L/LDE ratio

of the N-region. For the long and the short device considered

" in Chapter IV, L/LDE is 80 and 20 respectively. Therefore, the

two N+—regions dovnot interact with each other and the Nt-N

junctions are‘simple Chmic junctions. On the other hand, L/LDE
for the SCL triode is only about 6 and the SCL current flow cén
easily be realized. P

The correct description of this device should be based on

the two-dimensional analysis similar to those for the normal

JFETs. Due to the high doping level of the N+—regions, however,
the numerical method becomes extremely complicated. " Instead of

solving the pertinent equations exactly, an approximate but

simple analysis is presented in this section which can give the

‘general behavior of the external drain characteristics.

2

We have seeﬁ in Chapter IV that devices with small L/a

ratios have poor'saturation of the drain current when the drift

~ velocity is not saturated. When the drain voltage is increased,

e i pr e am—s. o s Ty e
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the decrease of the channel width and the free carrier concentratioﬁ
‘ inside the channel have been found to be smaller for the short de-
vice than for the long device. In the graded;channel device, the
carrier accumulation has been observed in the channel with a slight
interaction of the source and the drain N+—regions.

Suppose the SCL triode has a relatively small length-to-
width ratio (L/a ~ 1). Due tb the small L/a ratio and the strong
interaction of the-N+—regions, the drain current is determined
mainly by the current density of the NtT-N-NT structure with the
gate junction controlling the width of the_qonductive channel.

Let 2b be the width of this channel. Then, the drain current per

unit length in the Z-direction can be written as

as?Vgs) (5.11)

Ip = 2 Jgop(Vge) BV

where J is the magnitude of the current density obtained in

SCL
previous section and b is an average of b. Vis and VgS in
equatidn (5.11) and iﬁ the rest of this chapter are the magni-
tudeé Qf the unnormalized drain-to-source and the gate-to-source
voltage. In evaluating b, one should note that a larger potential

is required to deplete the increased carrier concentration in the

conductive channel. This can be taken care of by introducing

/

V =nV (5.12)

Here n is the normalized electron concentration in the conductive

’

channel and Vp is the pinch-off voltage of the device. By using



125.

t

1%

“the results of a one—dimensional analysis with Vp replaced by V_,

one obtains
b=a (l- ) | - (5.13)
YA
p .

where V is the potential drop across the space-charge region.

Let
Lo

vpc = () vp (5-}4)

A reasonable estimate of b can be obtained by using Vpc for
t ' - e

Vp and VgS + Vvior V in equation (5.13).

. Vv + V

B~a(l-,-L— By (5.15)
pc :

The triode characteristics shown in Fig. 5.6 are the result of
applying equations (5.11) and (5.15) to a device with L/a = 1.

20 atoms/cm3.

The doping level of the gate P+—regions is Ny= 10
The drain current for the bias conditions such that vgs + VB = VpC

is taken to be Zero.
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Figure 5.6 Drain characteristics of the SCL triode
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V-3 Comparison of the Drain Characteristics

The important parameters characterizing a JFET are

L/a = length-to-width ratio
: £r Ay o
Vp = pinch-o voltage = 2660 a
Ay 2
Vn-— ¢crossover voltage = QEEO L
Lpp = extrinsic Debye length of the channel
_ EEOkT
a 2
a ,.
o= qV_/kT
q p/
B = qv /KT

These parameters are related as -

Ei— = /2«
DE
L£_=/2B
DE

2
o B (L)
Vp o a

Depending on the choice of these parameters and the bias

o

voltages both pentode-like and triode-like drain characteristics
can be obtained. The long device considered in Chapter IV has

good pentode-like characteristics. The values of the parameters
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for this device are

8

L/a =
Vp-: 1.293 Volts
vV = 83.75 Volts
KR
o = 50
B = 3200

The applied bias voltages are less than 5 Volts. On the other

hand, the SCL triode considered in this chapter has

YL/a

=1
v =V = 0.517 Volts ) e
P n

o = 8:20

and the applied bias voltages are less than 10 Volts.

From the above comparison, it is élear that one can design
a field-effect device having pentode- or triode-like cﬁéraoter—
istics by choosing the parameters appropriétely. The importance
of this observation is that both ciiaracteristics can be obtained

without changing the configuration of the device.
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Chapter VI: CONCLUSION

A numerical method of analyzing JFETs has been developed

and applied to several device models to determine the physical

mechanism of the current conduction. The conventional JFETs

with N-channel have been analyzed including the source and the

drain N+~regions. The results show that

i)

ii)

iii)

In the region near drain, the channel width and the
electron concentration decrease with increasing dpain—
to-source voltage. As a result, space-charge region
is formed not only in the N-region but also in the
drain N+—region and most of the voltage drop occurs

in these space-charge regions, leaving the potential -
distribution in the source regionvunéhanged. This
gives the saturation of the drain current.

Although the electron concentration decreases with the
ihcreasing drain and gate voltage, there is always

a conduction path connecting the source and the

drain contacts.

When the drift velocity is not saturated, the differen-
tial drain conductance and the minimum of the electron
concentration along the center line of the device are
greater for a shorter device f;r the drain vbltage

beyond the pinch-off voltage.



iv) Increasing the gate voltége decreases the channel width
uniformly from the source to the drain and the operation
of a JFET with non-zero gate voltage is equivalent To
the operation of another JFET with correspondingly

smaller a and the same L and zero gate voltage.

The application of the method to a device model with non-
uniform doping profilé along the channel shows the .carrier
 accumulation in the conductive channel. This indicates the
possibility of the space-charge-limited current which is a dif-
ferent conduction mechanism from that of the conventional JFETs.
From the study of onefdimensional Nt oN-NT structures, the L/LDE
ratio and the crossover voltage have been recognized as important
parameters in realizing the space-charge-limited current. The
dfain characteristics of a device model with a small crogsover
voltage and a small L/LDE ratio are obtéined by a simple analysis.
Triode-like characteristics have been found for this model as
expected.

The variation of the mobility with the impurity concentration
is of secondary importance for the purpose of the present investi-
gation and has been neglected accordingly. The effect of the .
temperature to the mobility and the free carrier concentration
has also been neglected. When the power handling capability of
" a JFET is under investigation, these temperature dependenées may

be dimportant due to the high current density near the drain. For
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tﬁe pfesent investigation, a conétant temperature equal to the
room temperature has been assumed throughout the whole device.
The numerical method developed can also be applied to
insulated—gate FETs with minor revisions when the boundary con-
- ditions are known. When the storage space and the computing
time available are large enough, a two-dimensional analysis of

the SCL triode will become possible.
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